EPAB: Early Pattern Aware Bayesian Model for Social Content Popularity Prediction

Qitian Wu1, Chaoqi Yang1, Xiaofeng Gao1*, Peng He2, Guihai Chen1

1Shanghai Jiao Tong University, Shanghai, China
2Tencent, Shenzhen, China

\texttt{echo740@sjtu.edu.cn, ycqsjtu@gmail.com, gao-xf@cs.sjtu.edu.cn, paulhe@tencent.com, gchen@cs.sjtu.edu.cn}

\textbf{Abstract}—The boom of information technology enables social platforms (like Twitter) to disseminate social content (like news) in an unprecedented rate, which makes early-stage prediction for social content popularity of great practical significance. However, most existing studies assume a long-term observation before prediction and suffer from limited precision for early-stage prediction due to insufficient observation. In this paper, we take a fresh perspective, and propose a novel early pattern aware Bayesian model. The early pattern representation, which stands for early time series normalized on future popularity, can address what we call early-stage indistinctiveness challenge. Then we use an expressive evolving function to fit the time series and estimate three interpretable coefficients characterizing temporal effect of observed series on future evolution. Furthermore, Bayesian network is leveraged to model the probabilistic relations among features, early indicators and early patterns. Experiments on three real-world social platforms (Twitter, Weibo and WeChat) show that under different evaluation metrics, our model outperforms other methods in early-stage prediction and possesses low sensitivity to observation time.

I. INTRODUCTION

Nowadays, social content (like hashtags or news on Twitter) may trigger thousands even millions of posts or reposts, and further cause a huge social impact. Such phenomenon urges researchers to use early observed information to predict how many posts will arrive in the end, i.e., popularity of social content \cite{1, 2}. If the prediction can be made at very early stage, it could bring great prophetic benefits in various domains, such as rumor monitoring \cite{3}, personalized recommendation \cite{4} and targeted advertisement \cite{5}, etc.

There are extensive studies on content popularity prediction. In terms of methodology, they can be generally divided into two categories. The first category is feature driven method, which first extracts a set of observable features from early information (including observed time series, contextual information, user profiles or social network information) and then adopts machine learning algorithms to optimize a mapping function from features to popularity. Another category is point process method, which treats time interval between every post arrival as a random variable and utilizes stochastic process to model temporal sequence of post arrival. The sequence is used to estimate one intensity function reflecting some dynamic patterns hidden in temporal sequence. Based on the intensity function, one can further derive theoretical expectation of popularity or simulate future post arrival to conduct prediction. A slew of prior works based on these two methods have achieved decent accuracy when applied to a variety of real-world popularity prediction tasks for single posts \cite{6}, social topics \cite{7}, memes \cite{8}, hashtags \cite{9, 10}, and videos \cite{11}.

However, these studies are all based on a narrow perspective of long-term observation. For instance, \cite{7} utilizes features extracted from dozens of hours observation to predict popularity of social topics; and even worse, \cite{10} predicts popularity of Twitter hashtags when 80\% related posts are exposed. Such ‘late-arriving’ prediction lacks timeliness and embodies little practical significance. For example, in rumor monitoring domain, monitors need to detect a rumor on social platform before it causes great influence, so the accurate prediction should be done soon after its emergence. Moreover, this long-term observation provides sufficient information to help decision making. Based on that, feature driven method can easily extract some effective observable features that strongly correlate with popularity, and point process method can recognize some typical patterns hidden in the observed temporal sequence and further confidently deduce the future evolution. Unfortunately, early-stage prediction only allows short-time observation (e.g., 2 hours), providing insufficient information with random noise. Under such circumstance, previous models would get stuck in a poor performance. Hence, building an accurate and interpretable model to predict content popularity at early stage can bring great practical benefits and is waiting to be solved.

*Xiaofeng Gao is the corresponding author. This work is supported by the China 973 project (2014CB340303), the National Natural Science Foundation of China (61872238, 6147-2252, 61672353), the Shanghai Science and Technology Fund (1751-0740200), the CCF-Tencent Open Research Fund (RAGR20170114), and Huawei Innovation Research Program (HO2018085286).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1}
\caption{Post count time series for three social contents. The dash line is observation time and its left-side time interval is early-stage observing interval.}
\end{figure}

Early-stage popularity prediction is a non-trivial task with
two major challenges. First, some contents with similar early-stage evolution could generate quite different popularity (e.g., content 1 and content 2 in Fig. 1 behave similarly at first but have different future evolution). Such early-stage indistinctiveness phenomenon makes it hard to leverage observed time series to accurately deduce future evolution. Second, conversely, some contents with totally different evolution trends may reach a similar popularity (like content 2 and content 3 in Fig. 1). This indicates that observable features extracted from early time series could possess weak correlation with popularity, and some extra information from user profiles or social networks (spatial information of friendship networks) should be taken into account.

In this paper, we propose an early pattern aware Bayesian model (EPAB) to handle the early-stage popularity prediction task from a new perspective. The framework of our model is shown in Fig. 2. At the outset, we define a new concept, early pattern, to represent early-stage (observed) time series normalized on popularity. The normalization could overcome the challenge of early-stage indistinctiveness. Then, we adopt an expressive evolving function to fit the time series of contents and estimate three interpretable coefficients, called influence, attractiveness and potentiality, which characterize how early-stage series affect its future evolution. These coefficients named as early indicators bridge the gap between early patterns and observable features. Then we adopt Bayesian network to model the probabilistic relations among observable features, early indicators and early patterns. The Bayesian network aims at interpreting the observable information and latent relationship as much as possible, and select a set of effective features for early-stage prediction.

To verify our model, we conduct extensive experiments on three large data sets originated from different social platforms (Twitter, Weibo, and WeChat) and compete EPAB with six powerful baselines. Our prediction is made based on observation of 1 hour for Twitter, WeChat and 2 hours for Weibo. Experiment results manifest that under different evaluation metrics, our model achieves significant performance improvement in early-stage popularity prediction and low sensitivity to observation time.

II. EARLY PATTERN AWARE BAYESIAN MODEL

In this section, we introduce our model EPAB (Early Pattern Aware Bayesian Model) in detail. In Section V.A ∼ V.D, we present model training procedure including early pattern recognition, early indicator representation, early pattern and indicator modeling (using Bayesian network), and parameter learning. We will go into our motivations, specific implementations as well as model interpretation.

A. Early Patterns and Features

Firstly, we find that some contents with similar observed count series S^O_e but possess quite different popularity N_e. To address this challenge, we adopt an early pattern to characterize early-stage time series evolution from a global view. The early pattern for content e can be defined as $\{N_e(t_1), \ldots, N_e(t_m)\}$. The normalized term N_e in the denominator is designed to incorporate the global (or future) information. Hence, the early pattern reflects the early-stage evolution of count series normalized on the popularity.

We further adopt K-means algorithm to cluster contents, and divide content set E into K groups, i.e., $E = \bigcup_{k=1}^{K} E_k$. For each group E_k, every content $e \in E_k$ shares similar early pattern. Concretely, the L_2 distance is adopted to measure the similarity.

Fig. 2: EPAB framework. (a) In feature extraction, we extract temporal, user-related and structural features from data sets. (b) In model training, the training data are used to conduct model learning. (c) In model inference, we utilize observed information in the test data to predict prediction based on the trained model.
B. Early Indicator Representation

For contents in one early pattern group, we use a parametric evolving function to fit count series S_e. Consider content e, we use $A_e(t_j)$ to denote post count increments in time unit $[t_{j-1}, t_j]$, i.e., $A_e(t_j) = N_e(t_j) - N_e(t_{j-1})$. Then the evolving function can be defined as

$$A_e(t_j) = h_1^e \cdot (\gamma + e^{-\alpha t_j}) + h_2^e \cdot \sum_{t_p < t_j} A_e(t_p) e^{-\beta (t_j - t_p)} + h_3^e \cdot (A_e(t_j) - A_e(t_{j-1}))$$

(1)

Justification of the Model:
- The first term with coefficient h_1^e captures current influence triggered by the content. Parameter γ denotes base influence, while $e^{-\alpha t_j}$ captures decaying influence as time goes by.
- The second term with coefficient h_2^e characterizes effect of previous behaviors, and exponential factor $e^{-\beta (t_j - t_p)}$ captures the aging effect. The summation of all previous effects can reflect the capability of one content to trigger new post increment, which we name as attractiveness.
- The third term with coefficient h_3^e models effect of second-order increment of post count, and we call it as potentiality.
- Parameters α, β, γ are common scaling factors for one early pattern group and reflect shape of count series.

The evolving function (1) can be estimated by minimizing the square loss.

$$\min \sum_{e \in E_k} \sum_{j \leq n_e} \left(\frac{A_e(t_j) - A_e^*(t_j)}{A_e^*(t_j)} \right)^2,$$

(2)

where $A_e^*(t_j)$ denotes ground-truth increment of post count in time unit $[t_{j-1}, t_j]$.

By solving (2), we obtain three coefficients h_1^e, h_2^e, h_3^e for each content e, which capture the early influence, attractiveness and potentiality respectively. These coefficients can be a representation for effect of observed time series on future series evolution, so we call them as early indicators. In the following, we will leverage early indicators to bridge the gap between observable features and early patterns.

C. Early Pattern and Indicator Modeling

We proceed to model the relationship among features, early indicators and early patterns. Bayesian network is a probabilistic directed acyclical graphical model that represents a set of variables and their conditional dependencies via a directed acyclical graph (DAG). In the DAG, nodes represent random variables, which may be observable quantities, latent variables, unknown parameters or hypotheses. Edges represent conditional dependencies. If there is an edge from node A to node B, we say node A is a parent of node B and variable B conditionally depends on variable A. Each node is associated with a probability function that takes (as input) a particular set of values for the node's parent variables, and gives (as output) the probability (or probability distribution, if applicable) of the variable represented by the node. In machine learning domain, Bayesian network can model features and labels as random variables, and study their probabilistic relations. The model learning is based on a generative perspective which aims to maximize a likelihood function. As a generative model, Bayesian network is suitable for situations with insufficient and under-sampled data, and has extensive applications in biomonitoring [12], information retrieval [13] and geographical analysis [14].

Here we utilize Bayesian network to model the relationship among features x, early indicators h and early pattern category y (here, y is a integer variable ranged from 1 to K, and represents which early pattern group the content belongs to). The early pattern category y is output layer of the network, and the features x_i, $i = 1, \cdots, 9$ form observable layer. The early indicators h_j, $j = 1, 2, 3$ compose latent layer between the early pattern and features. We define two composite nodes, $H = \{h_1, h_2, h_3\}$ and $X = \{x_1, x_2, \cdots, x_9\}$. The graphical representation of y, H and X can be denoted by Fig. 3.

\[\text{output layer} \rightarrow H \rightarrow X \]

Fig. 3: Graphical representation of early pattern category y, early indicators H and features X, where H and X are two composite nodes.

For test data, we only have early information, i.e., the observable features X. We need to use features to infer the early indicators H as well as the early pattern y. One method is to leverage the posterior probability to make an optimal decision. Concretely, we can use H with the highest $p(H|X)$ as predicted early indicators and y with the highest $p(y|H)$ as predicted early patterns. According to Bayes Theorem, we have the equations for the two posterior probabilities:

$$p(y|H) = \frac{p(H|y) \cdot p(y)}{\sum_y p(H|y) \cdot p(y)}$$

(3)

$$p(H|X) = \frac{p(X|H) \cdot p(H)}{\sum_y p(X|H) \cdot p(y)}$$

(4)

To compute $p(y|H)$ and $p(H|X)$, we need to estimate $p(H|y)$, $p(X|H)$ and $p(y)$ with training data. In the following, we discuss how to estimate them in detail.

Firstly, we consider conditional probability $p(H|y)$. We observe that h_1, h_2 and h_3 are weakly correlated with each other, so we assume they are conditionally independent for low computational complexity. Thus, we have

$$p(H|y) = p(h_1|y) \cdot p(h_2|y) \cdot p(h_3|y).$$

(5)

By studying the characteristics of data frequency histogram, we observe that h_j tends to have a concentrated distributions for different early pattern categories. Assume h_j is a continuous random variable. Since h_j is nonnegative, we choose a
unimodal distribution, Gamma distribution, to characterize it, i.e.,
\[h_j | y = k \sim \text{Gamma}(a^j_k, b^j_k), \]
(6)
where \(a^j_k \) is a shape parameter, and \(b^j_k \) is a rate parameter for Gamma distribution. To keep notation clean, we let \(\theta_1 = \{a^j_k, b^j_k \mid 1 \leq k \leq K, 1 \leq j \leq 3\} \).

Then we proceed to probe into \(p(X|H) \). We also conduct correlation test on each feature \(x_i \) with each \(h_j \), and find that i) for one early indicator \(h_j \), some features are strongly correlated while others are weakly correlated, and ii) for different early indicators, features with strong correlation are distinct. It is straightforward but unreasonable to equally consider all features conditionally dependent on three early indicators. Instead, we assume feature \(x_i \) is conditionally dependent on a set of early indicators, denoted by \(Pa(x_i) \) (the parent nodes of \(x_i \)). \(Pa(x_i) \) can possibly cover all, any two, any one, or none of three early indicators. Then we have
\[p(X|H) = \prod_{i=1}^{9} p(x_i|Pa(x_i)). \]
(7)
Since \(h_j \) is a continuous value, it is intractable to handle the conditional probability \(p(x_i|h_j) \). Here we do a technical approximation and hash \(h_j \) into \(B \) buckets. By hashing, we convert the continuous \(h_j \) into discrete values, which we denote as \(h^j_b \) for discrimination. We observe that \(x_i \) tends to have a concentrated and symmetric distribution for different \(h^j_b \), so we adopt Gaussian distribution to characterize it.
\[x_i|Pa(x_i) \sim \text{Gaussian}(\mu^j_b, \sigma^j_b), \]
(8)
where \(\mu^j_b \) and \(\sigma^j_b \) are mean and standard deviation of Gaussian distribution, respectively. Here \(1 \leq b \leq B^{|Pa(x_i)|} \). Assume \(\theta_2 = \{\mu^j_b, \sigma^j_b \mid 1 \leq b \leq B^{|Pa(x_i)|}, 1 \leq i \leq 9\} \).

The prior probability of \(y \) obeys a discrete distribution, so we assume \(p(y = k) = c_k \) and let \(\theta_3 = \{c_k \mid 1 \leq k \leq K\} \).

The problem remains as two parts: i) optimize the parameters in two conditional distributions, i.e., \(\theta_1 \), \(\theta_2 \), and the parameters in prior probability, i.e., \(\theta_3 \), and ii) optimize constitution of each \(Pa(x_i) \). The first problem is to learn the parameters in Bayesian network, and the second problem is to learn the network structure.

D. Parameter and Structure Learning

Assume \(G \) is topological graph of Bayesian network. The basic objective for model training is to maximize the likelihood,
\[\mathcal{L}(\theta_1, \theta_2, \theta_3, G) = \prod_{e \in E} p(y_e) \cdot p(H_e|x_e) \cdot p(X_e|H_e) \]
(9)
\[= \prod_{e \in E} \prod_{j=1}^{3} p(h_j^e|y_e) \cdot \prod_{i=1}^{9} p(x_i^e|Pa(x_i)). \]

The intuition of maximizing (9) is to make the trained Bayesian network interpret observable information as much as possible. Besides, we also need to take model complexity into account. Based on Minimal Description Length principle, our objective can be written as
\[\min \lambda|\theta_2| - \log \mathcal{L}(\theta_1, \theta_2, \theta_3, G), \]
(10)
where \(|\theta_2| \) in the first term denotes number of parameters in \(\theta_2 \), which is equivalent to number of edges from early indicators \(H \) to features \(X \) in Bayesian network. \(\lambda \) is a weight parameter, which can balance the importance between likelihood and model complexity.

Particularly, optimization for \(\theta_1 \) and \(\theta_3 \) in (10) is independent of that for \(\theta_2 \), so we separate them apart to reduce computational cost. Firstly, we can minimize
\[l_1(\theta_1, \theta_3) = -\log \mathcal{L}_1(\theta_1, \theta_3, G_B) = -\sum_{e \in E} \log p(y_e) + \sum_{j=1}^{3} \log p(h_j^e|y_e) \]
(11)
\[= -\sum_{e \in E} \sum_{k=1}^{K} \chi_e^k \log c_k + \sum_{j=1}^{3} \log \text{Gamma}(h_j^e|a^j_k, b^j_k)). \]

Here \(\chi_e^k \) is an eigenfunction, where \(\chi_e^k = 1 \) if \(y_e = k \) and otherwise \(\chi_e^k = 0 \). We adopt Stochastic Gradient Descent (SGD) method to minimize (11).

Then we proceed to minimize
\[l_2(\theta_2, G) = |\theta_2| - \log \mathcal{L}_2(\theta_2, G) = |\theta_2| - \sum_{e \in E} \sum_{i=1}^{9} \log p(x_i^e|Pa(x_i)) \]
(12)
\[= |\theta_2| - \sum_{e \in E} \sum_{k=1}^{K} \sum_{b=1}^{B^{|Pa(x_i)|}} \chi_e^b \log \text{Gaussian}(x_i^e|\mu^j_b, \sigma^j_b). \]

If network topology \(G \) is given, then we can optimize \(\theta_2 \) by
\[\frac{\partial l_2}{\partial \mu^j_b} = 0, \quad \frac{\partial l_2}{\partial \sigma^j_b} = 0. \]
(13)
By solving (13), we obtain
\[\hat{\mu}^j_b = \frac{\sum_{e} \chi_e^b x_i^e}{\sum_{e} \chi_e^b}, \quad \hat{\sigma}^j_b = \sqrt{\frac{\sum_{e} \chi_e^b (x_i^e - \hat{\mu}^j_b)^2}{\sum_{e} \chi_e^b}}. \]
(14)
We further adopt Hill-Climbing structure learning method to search optimal topology.

III. EXPERIMENT RESULTS

In this section, we conduct experiments on three real-world datasets to verify our model.

Dataset Information. Twitter is the largest social network in the world. We use Twitter search API to collect tweets by real-time densely crawling from Aug. 13th, 2017 to Sep. 10th, 2017. Moreover, Sina Weibo is a prevalent Chinese social platform with about 0.4 billion monthly active users and also provides API for data crawling. The Weibo data set is
ranged from Aug. 10th, 2017 to Dec. 22nd, 2017. Our special data set is WeChat, a burgeoning social media with over 0.9 billion daily login users. WeChat Official Accounts established by individuals or companies can post articles with social information and users would share these articles in WeChat Moments. This sharing would give rise to more resharing by their fans, thus forming social content virality. We study the popularity of articles published by WeChat Official Accounts. For each data set, we filter out social contents with posts less than 50 and Table I shows the detailed information about three data sets. Each data set contains post information (like posted time and user ID), user information (like follower number) and friendship network information.

TABLE I: Basic information of data sets

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Twitter</th>
<th>Weibo</th>
<th>WeChat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Type</td>
<td>hashtag</td>
<td>topic</td>
<td>article</td>
</tr>
<tr>
<td>Post Type</td>
<td>tweet</td>
<td>microblog</td>
<td>share</td>
</tr>
<tr>
<td>#Contents</td>
<td>5,763</td>
<td>1,168</td>
<td>1 thousand</td>
</tr>
<tr>
<td>#Posts</td>
<td>529,059</td>
<td>410,733</td>
<td>6 million</td>
</tr>
<tr>
<td>#Follow Edges</td>
<td>39,614,487</td>
<td>5,934,504</td>
<td>7 million</td>
</tr>
</tbody>
</table>

Experiment Setup. As is depicted in Section III, observable features are extracted from observed time sequence in observing duration. Since information dissemination in Weibo appears to be slower than Twitter and WeChat, we basically consider 1 hour observation time for Twitter and WeChat and 2 hour for Weibo. Moreover, for each data set, we randomly choose 80% contents as training data and remaining contents as test data.

We adopt two classification metrics and two regression metrics to evaluate prediction performance in a multifaceted way. For classification, we consider a popularity threshold which can divide the contents into hot and non-hot contents at ratio 1:4. Then each content is assigned with a 0-1 label indicating hot or non-hot. The two classification metrics are F1-Score and Coverage@k. F1-Score aggregates two-fold performance measured by recall and precision. We use F1-Score to evaluate the general classification performance of these methods in early-stage prediction. Coverage@k is defined as the ratio of accurately detected top-k popular contents. For instance, if the method detects n contents that are among realistic top-k popular contents, then the Coverage@k will be \(\frac{n}{k} \). This metric measures ability of detecting extremely popular contents. Also, we consider two regression metrics Mean Absolute Percent Error (MAPE) and Pearson’s Correlation Coefficient (PCC).

We compare with six strong baselines proposed by recent studies: i) **Hawkes Process** [15]. ii) **SEISMIC** [6]. iii) **BEEP** [16]. iv) **ESP-TAN** [17]. v) **LARM** [11]. vi) **Support Vector Regression** (SVR). These baselines can be divided into three categories: point process models (Hawkes, SEISMIC), generative feature driven models (PreWhether, BEEP) and discriminative feature driven models (LARM, SVR).

Results and Discussions. We organize classification and regression results in Table II. For classification task, Hawkes performs poorly on Weibo and WeChat. These indicate that point process models are not suitable for early-stage classification, since they rely too much on sufficient observation. By contrast, LARM and SVR perform slightly better than two point process models, but the classification results are moderate compared with other Bayesian perspective methods. BEEP, and ESP-TAN provide neck-to-neck performance. In comparison, ESP-TAN gives slightly better prediction since it utilizes more features and adopts structure learning method to conduct feature selection. It is noteworthy that EPAB provides outstanding performance on three data sets. This verifies the argument that early patterns and early indicators link the early observed series to future evolution and make the popularity more predictable using observable features. This demonstrates that EPAB is competent in detecting hot content at early-stage.

As for regression, in general, the results show no significant difference from classification. Hawkes and SEISMIC both fail to fit the practical post count since they incline to provide extreme predicted value based on insufficient early information. Particularly, the MAPEs of SEISMIC for both Twitter and Weibo exceed 2, and one possible reason could be that SEISMIC makes some parametric assumptions that are custom-made for single post popularity prediction (like functional form of memory kernel [18]), which limits its generality to content popularity prediction. The regression performance of SVR model is more acceptable than classification on Weibo and WeChat, but it gives prediction with considerable deviation on Twitter. LARM performs relatively well for regression on three data sets, but its performance is still not impressive enough compared with EPAB. Remarkably, EPAB achieves significant performance improvement in both MAPE and PCC on three data sets. This verifies the argument that early patterns and early indicators link the early observed series to future evolution and make the popularity more predictable using observable features.

We probe into different observation time to study the performance variation of each method. The results is shown in Fig. 4. In the figure, we can see that with observation time increasing, both MAPE and F1-score performance improves greatly and variance of MAPE (reflected by width of the box) reduces, especially for SEISMIC and Hawkes. It indicates that point process models rely on observation time considerably. When the observation time is long enough (like), point process model could perform better than other feature driven models, which demonstrates that point process models are more suitable for long observation based prediction. By contrast, Bayesian perspective models including EPAB tend to be less sensitive to different observation time.

IV. Conclusion

This paper targets early-stage prediction for social content popularity and proposes an early pattern aware Bayesian model (EPAB). In EPAB, we use early patterns and early indicators to make future popularity predictable using observable features, based on a Bayesian perspective. Our evolving function helps to express latent relationship between early time series and
TABLE II: Early-stage experiment results for Twitter, Weibo and WeChat. The observation time for three data sets is 1h, 2h, 1h, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Twitter</th>
<th>Weibo</th>
<th>WeChat</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>MAPE</td>
<td>PCC</td>
<td>F1</td>
</tr>
<tr>
<td>SEISMIC</td>
<td>0.7831</td>
<td>0.2803</td>
<td>2.1723</td>
</tr>
<tr>
<td>Hawkes</td>
<td>0.5143</td>
<td>0.4694</td>
<td>1.8564</td>
</tr>
<tr>
<td>BEEP</td>
<td>0.8493</td>
<td>0.6324</td>
<td>0.9223</td>
</tr>
<tr>
<td>ESP-TAN</td>
<td>0.8547</td>
<td>0.7227</td>
<td>0.8701</td>
</tr>
<tr>
<td>LARM</td>
<td>0.7571</td>
<td>0.8221</td>
<td>0.8139</td>
</tr>
<tr>
<td>SVR</td>
<td>0.6557</td>
<td>0.5402</td>
<td>0.6724</td>
</tr>
<tr>
<td>EPAB</td>
<td>0.8813</td>
<td>0.7929</td>
<td>0.9811</td>
</tr>
</tbody>
</table>

1 The notion C@k is short for Coverage@k.
2 BEEP and ESP-TAN are only designed for classification.

Fig. 4: MAPEs and F1-Scores for Twitter, Weibo and WeChat under different observation time. The box plot depicts five points distribution of MAPE, while the red dotted curve denotes F1-score (1: SEISMIC, 2: Hawkes, 3: BEEP, 4: ESP-TAN, 5: LARM, 6: SVR, 7: EPAB).

future evolution, and Bayesian network model sheds insights on feature selection for early-stage popularity prediction. Our experiment results show that EPAB can accurately predict content popularity at very early stage for Twitter, Weibo and WeChat data sets.

REFERENCES